27， 30,33 are commonly used，please disregard the rest Chinese Characters．

具体 12－45中的鄎个，需恶指定
最常用27，30，33这三个号。
如果产品不大，可以用火花是可以做到。
但产品大了，直接打火花，不容易做出均匀的纹。
打完火花，拋光后再腐蚀纹。

Ra 值对应表

According to a (German) Document the VDI surfaces correspond to the following $\mathrm{Ra} / \mathrm{Rz}$ Values and require the following drafting angles:

VDI;	Ra;	Rz;	$\mathrm{DA}-\mathrm{PA} ;$	$\mathrm{DA}-\mathrm{PC} ;$	$\mathrm{DA}-\mathrm{ABS}$
$12 ;$	0,$40 ;$	1,$5 ;$	$0 ;$	1,$0 ;$	0,5
$15 ;$	0,$56 ;$	2,$4 ;$	0,$5 ;$	1,$0 ;$	0,5
$18 ;$	0,$80 ;$	3,$3 ;$	0,$5 ;$	1,$0 ;$	0,5
$21 ;$	1,$12 ;$	4,$7 ;$	0,$5 ;$	1,$0 ;$	0,5
$24 ;$	1,$60 ;$	6,$5 ;$	0,$5 ;$	1,$5 ;$	1,0
$27 ;$	2,$24 ;$	10,$5 ;$	1,$0 ;$	2,$0 ;$	1,5
$30 ;$	3,$15 ;$	12,$5 ;$	1,$5 ;$	2,$0 ;$	2,0
$33 ;$	4,$50 ;$	17,$5 ;$	2,$0 ;$	3,$0 ;$	2,5
$36 ;$	6,$30 ;$	24,$0 ;$	2,$5 ;$	4,$0 ;$	3,0
$39 ;$	9,$00 ;$	34,$0 ;$	3,$0 ;$	5,$0 ;$	4,0
$42 ;$	12,$50 ;$	48,$0 ;$	4,$0 ;$	6,$0 ;$	5,0
$45 ;$	18,$00 ;$	69,$0 ;$	5,$0 ;$	7,0	

DA-PA = Drafting Angle for Polyamide
DA-PC = Drafting Angle for Polycarbonate
DA-ABS = Drafting Angle for Acrilnitrile-Butadiene-Styrol
glass reinforced materials require more drafting

CHARMILLS 火花纹（VDI 3400标准）
光洁度对照表
CHARIILLS 火花竝数据（VDI 3400标准）

火花电钫的光洁度表				VI 3400	Ra		classes	21	1.12	44.8		
MDC		VDI3400 （ HASCO ）		CHNO．	m		$\begin{aligned} & \text { ISO } 1302 \\ & (1992) \end{aligned}$	22	126	50.4		
				23				1.40	56			
Grade	$\mathrm{Ra}(\mu \mathrm{m})$	Grade	$\mathrm{Ra}(\mu \mathrm{m})$		0	0.10	4	N3	24	1.62	63	
B1		0	0.10	1	0.11	44		25	180	72	N7	
B2		3	0.15	2	0.12	4.8		26	2.00	80		
		6	0.20	3	0.14	5.6		27	22	88		
B3		9	0.30	4	0.16	6.4		28	25	100		
E1	0.45	12	0.40	5	0.18	2	M	29	28	112		
E2	0.60	15	0.55	6	0.20	8		30	3.2	125	N8	
E3	0.80	18	0.80	7	0.22	8.8		31	3.5	140		
		21	1.10	8	0.25	10		32	4.0	100		
E4	1.50	24		9	0.28	11.2	34		4.5	180		
			1.60	10	0.32	128			5.0	200		
		27	2.20	11	0.35	14	N5	35	5.6	224		
E5	3.00	30	3.20	12	0.40	16		36	6.3	250	N	
E6	4.00	33	4.50	13	0.45	18		31	1	280		
E7	5.50	36	6.30	14	0.50	20		39	9	300		
E8	8.00			15	0.56	22.4		40	10	400		
E9	9.50	39	9.00	16	2.63	25.2		41	11.2	448		
E10	12.00	42	12.50	17	0.70	28		42	12.6	500	NiO	
E11	15.00			18	0.80	32	N6	43	14	560		
EI	15.00			19	0.90	36		44	16	640		
E12	18.00	45	18.00	20	1.00	40		45	18	760		

